کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4620490 1339464 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mixed initial boundary value problem for hyperbolic geometric flow on Riemann surfaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Mixed initial boundary value problem for hyperbolic geometric flow on Riemann surfaces
چکیده انگلیسی

The hyperbolic geometric flow equations is introduced recently by Kong and Liu motivated by Einstein equation and Hamilton Ricci flow. In this paper, we consider the mixed initial boundary value problem for hyperbolic geometric flow, and prove the global existence of classical solutions. The results show that, for any given initial metric on R2 in certain class of metric, one can always choose suitable initial velocity symmetric tensor such that the solutions exist, and the scalar curvature corresponding to the solution metric gij keeps bounded. If the initial velocity tensor does not satisfy the certain conditions, the solutions will blow up at a finite time. Some special explicit solutions to the reduced equation are given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 351, Issue 2, 15 March 2009, Pages 595-602