کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4620497 1339464 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniform stabilization of the wave equation on compact manifolds and locally distributed damping – a sharp result
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Uniform stabilization of the wave equation on compact manifolds and locally distributed damping – a sharp result
چکیده انگلیسی

Let (M,g)(M,g) be an n  -dimensional (n⩾2n⩾2) compact Riemannian manifold with or without boundary where g denotes a Riemannian metric of class C∞C∞. This paper is concerned with the study of the wave equation on (M,g)(M,g) with locally distributed damping, described byutt−Δgu+a(x)g(ut)=0on M×]0,∞[,u=0 on∂M×]0,∞[, where ∂M represents the boundary of M and the last condition is dropped when M   is boundaryless. Let ϵ>0ϵ>0. We prove that there exist an open subset V⊂MV⊂M and a smooth function f:M→Rf:M→R such that meas(V)⩾meas(M)−ϵmeas(V)⩾meas(M)−ϵ, Hessf≈gHessf≈g on V   and infx∈V|∇f(x)|>0infx∈V|∇f(x)|>0. This function f   is used in order to prove that if a(x)⩾a0>0a(x)⩾a0>0 on an open subset M*⊂MM*⊂M that contains M\VM\V and if g   is a monotonic increasing function such that k|s|⩽|g(s)|⩽K|s|k|s|⩽|g(s)|⩽K|s| for all |s|⩾1|s|⩾1, then uniform and optimal decay rates of the energy hold. Therefore, given an arbitrary ϵ>0ϵ>0, uniform and optimal decay rates of the energy hold if the damping is effective in a well-chosen open subset with volume less than ϵ.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 351, Issue 2, 15 March 2009, Pages 661–674
نویسندگان
, , , ,