کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4620533 | 1339465 | 2009 | 14 صفحه PDF | دانلود رایگان |

We study the asymptotical behavior of the p-adic singular Fourier integralsJπα,m;φ(t)=〈fπα;m(x)χp(xt),φ(x)〉=F[fπα;mφ](t),|t|p→∞,t∈Qp, where fπα;m∈D′(Qp)fπα;m∈D′(Qp) is a quasi associated homogeneous distribution (generalized function) of degree πα(x)=|x|pα−1π1(x) and order m , πα(x)πα(x), π1(x)π1(x), and χp(x)χp(x) are a multiplicative, a normed multiplicative, and an additive characters of the field QpQp of p -adic numbers, respectively, φ∈D(Qp)φ∈D(Qp) is a test function, m=0,1,2,…m=0,1,2,…, α∈Cα∈C. If Reα>0Reα>0 the constructed asymptotics constitute a p-adic version of the well-known Erdélyi lemma. Theorems which give asymptotic expansions of singular Fourier integrals are the Abelian type theorems. In contrast to the real case, all constructed asymptotics have the stabilization property.
Journal: Journal of Mathematical Analysis and Applications - Volume 350, Issue 1, 1 February 2009, Pages 170–183