کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4620733 | 1339469 | 2008 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Global existence of strong solutions to the Cauchy problem for a 1D radiative gas
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider a one-dimensional radiation hydrodynamics model in the case of the equilibrium diffusion approximation which is described by the compressible Navier–Stokes system with the additional terms in the pressure and internal energy respectively, which embody the effect of radiation. Under the physical growth conditions on the heat conductivity, we establish the existence and uniqueness of strong solutions to the Cauchy problem with large initial data, where the initial density and velocity may have differing constant states at infinity. Moreover, we show that if there is no vacuum in the initial density, then, the vacuum and concentration of the density will never occur in any finite time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 346, Issue 1, 1 October 2008, Pages 314-326
Journal: Journal of Mathematical Analysis and Applications - Volume 346, Issue 1, 1 October 2008, Pages 314-326