کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4620870 1339473 2008 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Large deviations for local time fractional Brownian motion and applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Large deviations for local time fractional Brownian motion and applications
چکیده انگلیسی

Let be a fractional Brownian motion of Hurst index H∈(0,1) with values in R, and let be the local time process at zero of a strictly stable Lévy process of index 1<α⩽2 independent of WH. The α-stable local time fractional Brownian motion is defined by ZH(t)=WH(Lt). The process ZH is self-similar with self-similarity index and is related to the scaling limit of a continuous time random walk with heavy-tailed waiting times between jumps [P. Becker-Kern, M.M. Meerschaert, H.P. Scheffler, Limit theorems for coupled continuous time random walks, Ann. Probab. 32 (2004) 730–756; M.M. Meerschaert, H.P. Scheffler, Limit theorems for continuous time random walks with infinite mean waiting times, J. Appl. Probab. 41 (2004) 623–638]. However, ZH does not have stationary increments and is non-Gaussian. In this paper we establish large deviation results for the process ZH. As applications we derive upper bounds for the uniform modulus of continuity and the laws of the iterated logarithm for ZH.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 346, Issue 2, 15 October 2008, Pages 432-445