کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4620917 1339475 2008 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Second dual projection characterizations of three classes of L0-closed, convex, bounded sets in L1
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Second dual projection characterizations of three classes of L0-closed, convex, bounded sets in L1
چکیده انگلیسی

Let τλ be the topology of convergence locally in measure on L1=L1(λ) and P be the Yosida–Hewitt projection from onto L1. We characterize convex, τλ-compact subsets C of L1 as precisely those for which P is a compactness preserving map from with the weak∗-topology to C with the τλ-topology. We further show that a convex, τλ-closed, L1-norm bounded subset C of L1 is a Schur set if and only if is sequentially continuous. Finally, we discover which τλ-closed, bounded, convex subsets C of L1 are such that is continuous. We call such sets C good. They turn out to be precisely the pluriweak-to-measure-continuity sets, in the sense defined below.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 342, Issue 1, 1 June 2008, Pages 1-16