کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4620917 | 1339475 | 2008 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Second dual projection characterizations of three classes of L0-closed, convex, bounded sets in L1
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let τλ be the topology of convergence locally in measure on L1=L1(λ) and P be the Yosida–Hewitt projection from onto L1. We characterize convex, τλ-compact subsets C of L1 as precisely those for which P is a compactness preserving map from with the weak∗-topology to C with the τλ-topology. We further show that a convex, τλ-closed, L1-norm bounded subset C of L1 is a Schur set if and only if is sequentially continuous. Finally, we discover which τλ-closed, bounded, convex subsets C of L1 are such that is continuous. We call such sets C good. They turn out to be precisely the pluriweak-to-measure-continuity sets, in the sense defined below.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 342, Issue 1, 1 June 2008, Pages 1-16
Journal: Journal of Mathematical Analysis and Applications - Volume 342, Issue 1, 1 June 2008, Pages 1-16