کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4620991 1339476 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Herz spaces and restricted summability of Fourier transforms and Fourier series
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Herz spaces and restricted summability of Fourier transforms and Fourier series
چکیده انگلیسی

A general summability method, the so-called θ-summability is considered for multi-dimensional Fourier transforms and Fourier series. A new inequality for the Hardy–Littlewood maximal function is verified. It is proved that if the Fourier transform of θ is in a Herz space, then the restricted maximal operator of the θ-means of a distribution is of weak type (1,1), provided that the supremum in the maximal operator is taken over a cone-like set. From this it follows that over a cone-like set a.e. for all f∈L1(Rd). Moreover, converges to f(x) over a cone-like set at each Lebesgue point of f∈L1(Rd) if and only if the Fourier transform of θ is in a suitable Herz space. These theorems are extended to Wiener amalgam spaces as well. The Riesz and Weierstrass summations are investigated as special cases of the θ-summation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 344, Issue 1, 1 August 2008, Pages 42-54