کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4621064 1339477 2008 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Operator identities involving the bivariate Rogers–Szegö polynomials and their applications to the multiple q-series identities
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Operator identities involving the bivariate Rogers–Szegö polynomials and their applications to the multiple q-series identities
چکیده انگلیسی

In this paper, we first give several operator identities involving the bivariate Rogers–Szegö polynomials. By applying the technique of parameter augmentation to the multiple q-binomial theorems given by Milne [S.C. Milne, Balanced summation theorems for U(n) basic hypergeometric series, Adv. Math. 131 (1997) 93–187], we obtain several new multiple q-series identities involving the bivariate Rogers–Szegö polynomials. These include multiple extensions of Mehler's formula and Rogers's formula. Our U(n+1) generalizations are quite natural as they are also a direct and immediate consequence of their (often classical) known one-variable cases and Milne's fundamental theorem for An or U(n+1) basic hypergeometric series in Theorem 1.49 of [S.C. Milne, An elementary proof of the Macdonald identities for , Adv. Math. 57 (1985) 34–70], as rewritten in Lemma 7.3 on p. 163 of [S.C. Milne, Balanced summation theorems for U(n) basic hypergeometric series, Adv. Math. 131 (1997) 93–187] or Corollary 4.4 on pp. 768–769 of [S.C. Milne, M. Schlosser, A new An extension of Ramanujan's summation with applications to multilateral An series, Rocky Mountain J. Math. 32 (2002) 759–792].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 343, Issue 2, 15 July 2008, Pages 884-903