کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4621195 1631573 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces
چکیده انگلیسی

In this paper we study the Cauchy problem for the semilinear fractional power dissipative equation ut+α(−Δ)u=F(u) for the initial data u0 in critical Besov spaces with , where α>0, F(u)=P(D)ub+1 with P(D) being a homogeneous pseudo-differential operator of order d∈[0,2α) and b>0 being an integer. Making use of some estimates of the corresponding linear equation in the frame of mixed time–space spaces, the so-called “mono-norm method” which is different from the Kato's “double-norm method,” Fourier localization technique and Littlewood–Paley theory, we get the well-posedness result in the case .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 340, Issue 2, 15 April 2008, Pages 1326-1335