کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4621232 | 1339480 | 2008 | 19 صفحه PDF | دانلود رایگان |

Since their introduction H-measures have been mostly used in problems related to propagation effects for hyperbolic equations and systems. In this study we give an attempt to apply the H-measure theory to other types of equations. Through a number of examples we present how do the differences between parabolic and hyperbolic equations reflect in the properties of H-measures corresponding to the solutions. Secondly, we apply the H-measures to the Schrödinger equation, where we succeed in proving a propagation property. However, our conclusion is that a variant of H-measures should be sought which would be better suited to parabolic problems. We propose such a variant, show some fundamental properties and illustrate its applicability by some examples. In particular, we show that the variant provides new information in a number of situations where the original H-measures did not. Finally, we describe how the new variant can be used in small amplitude homogenisation of parabolic equations.
Journal: Journal of Mathematical Analysis and Applications - Volume 343, Issue 1, 1 July 2008, Pages 207-225