کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4621245 1339480 2008 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the global existence of solutions to an aggregation model
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the global existence of solutions to an aggregation model
چکیده انگلیسی

In this paper we consider a reaction–diffusion–chemotaxis aggregation model of Keller–Segel type with a nonlinear, degenerate diffusion. Assuming that the diffusion function f(n) takes values sufficiently large, i.e. takes values greater than the values of a power function with sufficiently high power (f(n)⩾δnp for all n>0, where δ>0 is a constant), we prove global-in-time existence of weak solutions. Since one of the main features of Keller–Segel type models is the possibility of blow-up of solutions in finite time, we will derive the uniform-in-time boundedness, which prevents the explosion of solutions. The uniqueness of solutions is proved provided that some higher regularity condition on solutions is known a priori. Finally, computational simulation results showing the effect of three different types of diffusion function are presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 343, Issue 1, 1 July 2008, Pages 379-398