کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4621254 1339480 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The quantitative difference between countable compactness and compactness
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The quantitative difference between countable compactness and compactness
چکیده انگلیسی

We establish here some inequalities between distances of pointwise bounded subsets H of RX to the space of real-valued continuous functions C(X) that allow us to examine the quantitative difference between (pointwise) countable compactness and compactness of H relative to C(X). We prove, amongst other things, that if X is a countably K-determined space the worst distance of the pointwise closure of H to C(X) is at most 5 times the worst distance of the sets of cluster points of sequences in H to C(X): here distance refers to the metric of uniform convergence in RX. We study the quantitative behavior of sequences in H approximating points in . As a particular case we obtain the results known about angelicity for these Cp(X) spaces obtained by Orihuela. We indeed prove our results for spaces C(X,Z) (hence for Banach-valued functions) and we give examples that show when our estimates are sharp.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 343, Issue 1, 1 July 2008, Pages 479-491