کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4621286 | 1339481 | 2008 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spectrum of a non-self-adjoint operator associated with the periodic heat equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study the spectrum of the linear operator L=−∂θ−ϵ∂θ(sinθ∂θ) subject to the periodic boundary conditions on θ∈[−π,π]. We prove that the operator is closed in with the domain in for |ϵ|<2, its spectrum consists of an infinite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations of eigenvalues and eigenfunctions, we show that all eigenvalues are simple, located on the imaginary axis and the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions does not form a basis in .
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 342, Issue 2, 15 June 2008, Pages 970-988
Journal: Journal of Mathematical Analysis and Applications - Volume 342, Issue 2, 15 June 2008, Pages 970-988