کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4621497 | 1339484 | 2008 | 18 صفحه PDF | دانلود رایگان |

This paper is devoted to the study of the essential growth rate of some class of semigroup generated by bounded perturbation of some non-densely defined problem. We extend some previous results due to Thieme [H.R. Thieme, Quasi-compact semigroups via bounded perturbation, in: Advances in Mathematical Population Dynamics—Molecules, Cells and Man, Houston, TX, 1995, in: Ser. Math. Biol. Med., vol. 6, World Sci. Publishing, River Edge, NJ, 1997, pp. 691–711] to a class of non-densely defined Cauchy problems in Lp. In particular in the context the integrated semigroup is not operator norm locally Lipschitz continuous. We overcome the lack of Lipschitz continuity of the integrated semigroup by deriving some weaker properties that are sufficient to give information on the essential growth rate.
Journal: Journal of Mathematical Analysis and Applications - Volume 341, Issue 1, 1 May 2008, Pages 501-518