کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4621593 | 1339486 | 2008 | 13 صفحه PDF | دانلود رایگان |

Many real life problems can be stated as a continuous minimax optimization problem. Well-known applications to engineering, finance, optics and other fields demonstrate the importance of having reliable methods to tackle continuous minimax problems. In this paper a new approach to the solution of continuous minimax problems over reals is introduced, using tools based on modal intervals. Continuous minimax problems, and global optimization as a particular case, are stated as the computation of semantic extensions of continuous functions, one of the key concepts of modal intervals. Modal intervals techniques allow to compute, in a guaranteed way, such semantic extensions by means of an efficient algorithm. Several examples illustrate the behavior of the algorithms in unconstrained and constrained minimax problems.
Journal: Journal of Mathematical Analysis and Applications - Volume 339, Issue 1, 1 March 2008, Pages 18-30