کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4621745 1339488 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Disjointness preserving operators between little Lipschitz algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Disjointness preserving operators between little Lipschitz algebras
چکیده انگلیسی

Given a real number α∈(0,1)α∈(0,1) and a metric space (X,d)(X,d), let Lipα(X)Lipα(X) be the algebra of all scalar-valued bounded functions f on X such thatpα(f)=sup{|f(x)−f(y)|/d(x,y)α:x,y∈X,x≠y}<∞, endowed with any one of the norms ‖f‖=max{pα(f),‖f‖∞}‖f‖=max{pα(f),‖f‖∞} or ‖f‖=pα(f)+‖f‖∞‖f‖=pα(f)+‖f‖∞. The little Lipschitz algebra lipα(X)lipα(X) is the closed subalgebra of Lipα(X)Lipα(X) formed by all those functions f   such that |f(x)−f(y)|/dα(x,y)→0|f(x)−f(y)|/d(x,y)α→0 as d(x,y)→0d(x,y)→0. A linear mapping T:lipα(X)→lipα(Y) is called disjointness preserving if f⋅g=0f⋅g=0 in lipα(X)lipα(X) implies (Tf)⋅(Tg)=0(Tf)⋅(Tg)=0 in lipα(Y)lipα(Y). In this paper we study the representation and the automatic continuity of such maps T in the case in which X and Y are compact. We prove that T   is essentially a weighted composition operator Tf=h⋅(f○φ)Tf=h⋅(f○φ) for some nonvanishing little Lipschitz function h and some continuous map φ. If, in addition, T is bijective, we deduce that h   is a nonvanishing function in lipα(Y)lipα(Y) and φ is a Lipschitz homeomorphism from Y onto X and, in particular, we obtain that T   is automatically continuous and T−1T−1 is disjointness preserving. Moreover we show that there exists always a discontinuous disjointness preserving linear functional on lipα(X)lipα(X), provided X is an infinite compact metric space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 337, Issue 2, 15 January 2008, Pages 984–993
نویسندگان
,