کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4621768 1339488 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Metric geometry of partial isometries in a finite von Neumann algebra
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Metric geometry of partial isometries in a finite von Neumann algebra
چکیده انگلیسی
We study the geometry of the setIp={v∈M:v∗v=p} of partial isometries of a finite von Neumann algebra M, with initial space p (p is a projection of the algebra). This set is a C∞ submanifold of M in the norm topology of M. However, we study it in the strong operator topology, in which it does not have a smooth structure. This topology allows for the introduction of inner products on the tangent spaces by means of a fixed trace τ in M. The quadratic norms do not define a Hilbert-Riemann metric, for they are not complete. Nevertheless certain facts can be established: a restricted result on minimality of geodesics of the Levi-Civita connection, and uniqueness of these as the only possible minimal curves. We prove also that (Ip,dg) is a complete metric space, where dg is the geodesic distance of the manifold (or the metric given by the infima of lengths of piecewise smooth curves).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 337, Issue 2, 15 January 2008, Pages 1226-1237
نویسندگان
,