کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4621768 | 1339488 | 2008 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Metric geometry of partial isometries in a finite von Neumann algebra
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study the geometry of the setIp={vâM:vâv=p} of partial isometries of a finite von Neumann algebra M, with initial space p (p is a projection of the algebra). This set is a Câ submanifold of M in the norm topology of M. However, we study it in the strong operator topology, in which it does not have a smooth structure. This topology allows for the introduction of inner products on the tangent spaces by means of a fixed trace Ï in M. The quadratic norms do not define a Hilbert-Riemann metric, for they are not complete. Nevertheless certain facts can be established: a restricted result on minimality of geodesics of the Levi-Civita connection, and uniqueness of these as the only possible minimal curves. We prove also that (Ip,dg) is a complete metric space, where dg is the geodesic distance of the manifold (or the metric given by the infima of lengths of piecewise smooth curves).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 337, Issue 2, 15 January 2008, Pages 1226-1237
Journal: Journal of Mathematical Analysis and Applications - Volume 337, Issue 2, 15 January 2008, Pages 1226-1237
نویسندگان
Esteban Andruchow,