کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4621803 | 1339489 | 2007 | 15 صفحه PDF | دانلود رایگان |

Let s and z be complex variables, Γ(s)Γ(s) the Gamma function, and (s)ν=Γ(s+ν)Γ(s) for any complex ν the generalized Pochhammer symbol. The principal aim of the paper is to investigate the functionEα,βγ,q(z)=∑n=0∞(γ)qnΓ(αn+β)znn!, where α,β,γ∈Cα,β,γ∈C; Re(α)>0Re(α)>0, Re(β)>0Re(β)>0, Re(γ)>0Re(γ)>0 and q∈(0,1)∪Nq∈(0,1)∪N. This is a generalization of the exponential function exp(z)exp(z), the confluent hypergeometric function Φ(γ,α;z)Φ(γ,α;z), the Mittag-Leffler function Eα(z)Eα(z), the Wiman's function Eα,β(z)Eα,β(z) and the function Eα,βγ(z) defined by Prabhakar. For the function Eα,βγ,q(z) its various properties including usual differentiation and integration, Laplace transforms, Euler (Beta) transforms, Mellin transforms, Whittaker transforms, generalised hypergeometric series form, Mellin–Barnes integral representation with their several special cases are obtained and its relationship with Laguerre polynomials, Fox H-function and Wright hypergeometric function is also established.
Journal: Journal of Mathematical Analysis and Applications - Volume 336, Issue 2, 15 December 2007, Pages 797–811