کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4621884 | 1339490 | 2008 | 20 صفحه PDF | دانلود رایگان |

Boundary-transmission problems of first order for the Helmholtz equation are considered within the context of wave diffraction by a periodic strip grating and formulated as convolution type operators acting on a Bessel potential periodic space setting. Two boundary-value problems are studied for an arbitrary geometry of the grating: the oblique derivative and the classic Neumann boundary-value problems. The convolution type operators on the grating which correspond to the given boundary-transmission problems are associated with Toeplitz operators acting on spaces of matrix functions defined on composed contours. A Fredholm theory for periodic boundary-value problems of first order is established independently of the grating period and the Fredholm indices for the oblique derivative and the classic Neumann boundary-value problems are given.
Journal: Journal of Mathematical Analysis and Applications - Volume 338, Issue 1, 1 February 2008, Pages 330-349