کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4621888 1339490 2008 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Normality and modulability indices. Part II: Convex cones in Hilbert spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Normality and modulability indices. Part II: Convex cones in Hilbert spaces
چکیده انگلیسی

Let K be a closed convex cone in a Hilbert space X  . Let BXBX be the closed unit ball of X   and K
• =(BX+K)∩(BX−K)K
• =(BX+K)∩(BX−K). The normality indexν(K)=sup{r⩾0:rK
• ⊂BX} is a coefficient that measures to which extent the cone K   is normal. We establish a formula that relates ν(K)ν(K) to the maximal angle of K. A concept dual to normality is that of modulability. As a by-product one obtains a formula for computing the modulability indexμ(K)=sup{r⩾0:rBX⊂K
• } of K  . The symbol K
• K
• stands for the absolutely convex hull of K∩BXK∩BX. We show that μ(K)μ(K) can be expressed in terms of the smallest critical angle of K.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 338, Issue 1, 1 February 2008, Pages 392–406
نویسندگان
, ,