کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4621908 | 1339490 | 2008 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Second order differentiability of paths via a generalized -variation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We find an equivalent condition for a continuous vector-valued path to be Lebesgue equivalent to a twice differentiable function. For that purpose, we introduce the notion of a function, which plays an analogous role for the second order differentiability as the classical notion of a VBG∗ function for the first order differentiability. In fact, for a function f:[a,b]→X, being Lebesgue equivalent to a twice differentiable function is the same as being Lebesgue equivalent to a differentiable function g with a pointwise Lipschitz derivative such that g″(x) exists whenever g′(x)≠0. We also consider the case when the first derivative can be taken non-zero almost everywhere.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 338, Issue 1, 1 February 2008, Pages 628-638
Journal: Journal of Mathematical Analysis and Applications - Volume 338, Issue 1, 1 February 2008, Pages 628-638