کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4621974 | 1339491 | 2007 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Viscosity solutions for partial differential equations with Neumann type boundary conditions and some aspects of Aubry–Mather theory
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study partial differential inequalities (PDI) of the type where NK(⋅) is the normal cone to the set K. We prove existence of a constant such that the PDI of Hamilton–Jacobi type has a unique (global) Lipschitz viscosity solution. We provide a formula to calculate this constant. Moreover, we define a subset of K such that any two solutions of the previous PDI which coincide on will coincide on K. Our paper generalizes results of the case without boundary conditions for convex Hamiltonians obtained by L.C. Evans and A. Fathi.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 336, Issue 1, 1 December 2007, Pages 664-682
Journal: Journal of Mathematical Analysis and Applications - Volume 336, Issue 1, 1 December 2007, Pages 664-682