کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622024 1339492 2007 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the determination of the basin of attraction of a periodic orbit in two-dimensional systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the determination of the basin of attraction of a periodic orbit in two-dimensional systems
چکیده انگلیسی

We consider the general nonlinear differential equation with x∈R2 and develop a method to determine the basin of attraction of a periodic orbit. Borg's criterion provides a method to prove existence, uniqueness and exponential stability of a periodic orbit and to determine a subset of its basin of attraction. In order to use the criterion one has to find a function W∈C1(R2,R) such that LW(x)=W′(x)+L(x) is negative for all x∈K, where K is a positively invariant set. Here, L(x) is a given function and W′(x) denotes the orbital derivative of W. In this paper we prove the existence and smoothness of a function W such that LW(x)=−μ‖f(x)‖. We approximate the function W, which satisfies the linear partial differential equation W′(x)=〈∇W(x),f(x)〉=−μ‖f(x)‖−L(x), using radial basis functions and obtain an approximation w such that Lw(x)<0. Using radial basis functions again, we determine a positively invariant set K so that we can apply Borg's criterion. As an example we apply the method to the Van-der-Pol equation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 335, Issue 1, 1 November 2007, Pages 461-479