کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622037 1339492 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Further summation formulae related to generalized harmonic numbers
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Further summation formulae related to generalized harmonic numbers
چکیده انگلیسی

By employing the univariate series expansion of classical hypergeometric series formulae, Shen [L.-C. Shen, Remarks on some integrals and series involving the Stirling numbers and ζ(n), Trans. Amer. Math. Soc. 347 (1995) 1391–1399] and Choi and Srivastava [J. Choi, H.M. Srivastava, Certain classes of infinite series, Monatsh. Math. 127 (1999) 15–25; J. Choi, H.M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005) 51–70] investigated the evaluation of infinite series related to generalized harmonic numbers. More summation formulae have systematically been derived by Chu [W. Chu, Hypergeometric series and the Riemann Zeta function, Acta Arith. 82 (1997) 103–118], who developed fully this approach to the multivariate case. The present paper will explore the hypergeometric series method further and establish numerous summation formulae expressing infinite series related to generalized harmonic numbers in terms of the Riemann Zeta function ζ(m) with m=5,6,7, including several known ones as examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 335, Issue 1, 1 November 2007, Pages 692-706