کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622153 1339494 2007 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local and global norm comparison theorems for solutions to the nonhomogeneous A-harmonic equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Local and global norm comparison theorems for solutions to the nonhomogeneous A-harmonic equation
چکیده انگلیسی

We establish local and global norm inequalities for solutions of the nonhomogeneous A-harmonic equation A(x,g+du)=h+d⋆v for differential forms. As applications of these inequalities, we prove the Sobolev–Poincaré type imbedding theorems and obtain Lp-estimates for the gradient operator ∇ and the homotopy operator T from the Banach space Ls(D,Λl) to the Sobolev space W1,s(D,Λl−1), l=1,2,…,n. These results can be used to study both qualitative and quantitative properties of solutions of the A-harmonic equations and the related differential systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 335, Issue 2, 15 November 2007, Pages 1274-1293