کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622372 1339498 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Selections of bounded variation under the excess restrictions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Selections of bounded variation under the excess restrictions
چکیده انگلیسی

Let X be a metric space with metric d, c(X) denote the family of all nonempty compact subsets of X and, given F,G∈c(X), let e(F,G)=supx∈Finfy∈Gd(x,y) be the Hausdorff excess of F over G. The excess variation of a multifunction , which generalizes the ordinary variation V of single-valued functions, is defined by where the supremum is taken over all partitions of the interval [a,b]. The main result of the paper is the following selection theorem: If , V+(F,[a,b])<∞, t0∈[a,b] and x0∈F(t0), then there exists a single-valued function of bounded variation such that f(t)∈F(t) for all t∈[a,b], f(t0)=x0, V(f,[a,t0))⩽V+(F,[a,t0)) and V(f,[t0,b])⩽V+(F,[t0,b]). We exhibit examples showing that the conclusions in this theorem are sharp, and that it produces new selections of bounded variation as compared with [V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (1) (2004) 1–82]. In contrast to this, a multifunction F satisfying e(F(s),F(t))⩽C(t−s) for some constant C⩾0 and all s,t∈[a,b] with s⩽t (Lipschitz continuity with respect to e(⋅,⋅)) admits a Lipschitz selection with a Lipschitz constant not exceeding C if t0=a and may have only discontinuous selections of bounded variation if a

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 331, Issue 2, 15 July 2007, Pages 873-885