کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622408 1339498 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Typical Rényi dimensions of measures. The cases: q=1 and q=∞
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Typical Rényi dimensions of measures. The cases: q=1 and q=∞
چکیده انگلیسی

We study the typical behaviour (in the sense of Baire's category) of the q-Rényi dimensions and of a probability measure μ on Rd for q∈[−∞,∞]. Previously we found the q-Rényi dimensions and of a typical measure for q∈(0,∞). In this paper we determine the q-Rényi dimensions and of a typical measure for q=1 and for q=∞. In particular, we prove that a typical measure μ is as irregular as possible: for q=∞, the lower Rényi dimension attains the smallest possible value, and for q=1 and q=∞ the upper Rényi dimension attains the largest possible value.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 331, Issue 2, 15 July 2007, Pages 1425-1439