کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622434 1339499 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gidas–Ni–Nirenberg results for finite difference equations: Estimates of approximate symmetry
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Gidas–Ni–Nirenberg results for finite difference equations: Estimates of approximate symmetry
چکیده انگلیسی

Are positive solutions of finite difference boundary value problems Δhu=f(u) in Ωh, u=0 on ∂Ωh as symmetric as the domain? To answer this question we first show by examples that almost arbitrary non-symmetric solutions can be constructed. This is in striking difference to the continuous case, where by the famous Gidas–Ni–Nirenberg theorem [B. Gidas, Wei-Ming Ni, L. Nirenberg, Symmetry and related problems via the maximum principle, Comm. Math. Phys. 68 (1979) 209–243] positive solutions inherit the symmetry of the underlying domain. Then we prove approximate symmetry theorems for solutions on equidistantly meshed n-dimensional cubes: explicit estimates depending on the data are given which show that the solutions become more symmetric as the discretization gets finer. The quality of the estimates depends on whether or not f(0)<0. The one-dimensional case stands out in two ways: the proofs are elementary and the estimates for the defect of symmetry are O(h) compared to O(1/|log(h)|) in the higher-dimensional case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 334, Issue 1, 1 October 2007, Pages 206-222