کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622480 1339500 2007 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Liouville–Green asymptotic approximation for a class of matrix differential equations and semi-discretized partial differential equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Liouville–Green asymptotic approximation for a class of matrix differential equations and semi-discretized partial differential equations
چکیده انگلیسی

A Liouville–Green (or WKB) asymptotic approximation theory is developed for the class of linear second-order matrix differential equations Y″=[f(t)A+G(t)]Y on [a,+∞), where A and G(t) are matrices and f(t) is scalar. This includes the case of an “asymptotically constant” (not necessarily diagonalizable) coefficient A (when f(t)≡1). An explicit representation for a basis of the right-module of solutions is given, and precise computable bounds for the error terms are provided. The double asymptotic nature with respect to both t and some parameter entering the matrix coefficient is also shown. Several examples, some concerning semi-discretized wave and convection–diffusion equations, are given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 325, Issue 1, 1 January 2007, Pages 69-89