کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622533 1339500 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, II
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, II
چکیده انگلیسی

In [S.G. Samko, B.G. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, J. Math. Anal. Appl. 310 (2005) 229–246], Sobolev-type p(⋅)→q(⋅)-theorems were proved for the Riesz potential operator Iα in the weighted Lebesgue generalized spaces Lp(⋅)(Rn,ρ) with the variable exponent p(x) and a two-parameter power weight fixed to an arbitrary finite point x0 and to infinity, under an additional condition relating the weight exponents at x0 and at infinity. We show in this note that those theorems are valid without this additional condition. Similar theorems for a spherical analogue of the Riesz potential operator in the corresponding weighted spaces Lp(⋅)(Sn,ρ) on the unit sphere Sn in Rn+1 are also improved in the same way.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 325, Issue 1, 1 January 2007, Pages 745-751