کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622686 1339503 2007 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Kustaanheimo–Stiefel map, the Hopf fibration and the square root map on R3 and R4
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The Kustaanheimo–Stiefel map, the Hopf fibration and the square root map on R3 and R4
چکیده انگلیسی

We study the Kustaanheimo–Stiefel map (KSM) ψ from U∗:=R4∖{0} to X∗:=R3∖{0} and the principal circle bundle P=(U∗,ψ,X∗,S1) that it induces. We show that the KSM is the appropriate generalization of the squaring map z↦z2, z∈C, and not quaternion-multiplication, in that the KSM induces a principal circle bundle on S3→S2, namely the Hopf fibration, while quaternion-squaring is degenerate because the dimension of the fibers is not constant.We construct two square root branches from the upper and lower half of R3 to R3∖−(x1) where −(x1) is the nonpositive x1-axis in R3 and resembles the cut used to define the standard complex square root branches . We glue these two branches together.We introduce what we like to call KS cylindrical coordinates with a 2-dimensional axis of rotation. We also introduce what we call KS torical and spherical coordinates.We use the KS cylindrical coordinates to define the full square root map on an S1-cover of R3 given by (R3×S1)/∼, where ∼ is an equivalence relation on −(x1)×S1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 332, Issue 1, 1 August 2007, Pages 631-665