کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622743 1339504 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamical systems method (DSM) for selfadjoint operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Dynamical systems method (DSM) for selfadjoint operators
چکیده انگلیسی

Let A be a selfadjoint linear operator in a Hilbert space H. The DSM (dynamical systems method) for solving equation Av=f consists of solving the Cauchy problem , u(0)=u0, where Φ is a suitable operator, and proving that (i) ∃u(t) ∀t>0, (ii) ∃u(∞), and (iii) A(u(∞))=f. It is proved that if equation Av=f is solvable and u solves the problem , u(0)=u0, where a>0 is a parameter and u0 is arbitrary, then lima→0limt→∞u(t,a)=y, where y is the unique minimal-norm solution of the equation Av=f. Stable solution of the equation Av=f is constructed when the data are noisy, i.e., fδ is given in place of f, ‖fδ−f‖⩽δ. The case when a=a(t)>0, , a(t)↘0 as t→∞ is considered. It is proved that in this case limt→∞u(t)=y and if fδ is given in place of f, then limt→∞u(tδ)=y, where tδ is properly chosen.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 328, Issue 2, 15 April 2007, Pages 1290-1296