کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622933 1339507 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Statistical convergence and ideal convergence for sequences of functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Statistical convergence and ideal convergence for sequences of functions
چکیده انگلیسی

Let I⊂P(N) stand for an ideal containing finite sets. We discuss various kinds of statistical convergence and I-convergence for sequences of functions with values in R or in a metric space. For real valued measurable functions defined on a measure space (X,M,μ), we obtain a statistical version of the Egorov theorem (when μ(X)<∞). We show that, in its assertion, equi-statistical convergence on a big set cannot be replaced by uniform statistical convergence. Also, we consider statistical convergence in measure and I-convergence in measure, with some consequences of the Riesz theorem. We prove that outer and inner statistical convergences in measure (for sequences of measurable functions) are equivalent if the measure is finite.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 328, Issue 1, 1 April 2007, Pages 715-729