کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4622933 | 1339507 | 2007 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Statistical convergence and ideal convergence for sequences of functions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let I⊂P(N) stand for an ideal containing finite sets. We discuss various kinds of statistical convergence and I-convergence for sequences of functions with values in R or in a metric space. For real valued measurable functions defined on a measure space (X,M,μ), we obtain a statistical version of the Egorov theorem (when μ(X)<∞). We show that, in its assertion, equi-statistical convergence on a big set cannot be replaced by uniform statistical convergence. Also, we consider statistical convergence in measure and I-convergence in measure, with some consequences of the Riesz theorem. We prove that outer and inner statistical convergences in measure (for sequences of measurable functions) are equivalent if the measure is finite.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 328, Issue 1, 1 April 2007, Pages 715-729
Journal: Journal of Mathematical Analysis and Applications - Volume 328, Issue 1, 1 April 2007, Pages 715-729