کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4622956 1339508 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the determination of the number of periodic (or closed) solutions of a scalar differential equation with convexity
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the determination of the number of periodic (or closed) solutions of a scalar differential equation with convexity
چکیده انگلیسی

It is well known that a scalar differential equation , where f(t,x) is continuous, T-periodic in t and weakly convex or concave in x has no, one or two T-periodic solutions or a connected band of T-periodic solutions. The last possibility can be excluded if f(t,x) is strictly convex or concave for some t in the period interval. In this paper we investigate how the actual number of T-periodic solutions for a given equation of this type in principle can be determined, if f(t,x) is also assumed to have a continuous derivative . It turns out that there are three cases. In each of these cases we indicate the monotonicity properties and the domain of values for the function P(ξ)=S(ξ)−ξ, where S(ξ) is the Poincaré successor function. From these informations the actual number of periodic solutions can be determined, since a zero of P(ξ) represents a periodic solution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 331, Issue 1, 1 July 2007, Pages 206-219