کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4622956 | 1339508 | 2007 | 14 صفحه PDF | دانلود رایگان |

It is well known that a scalar differential equation , where f(t,x) is continuous, T-periodic in t and weakly convex or concave in x has no, one or two T-periodic solutions or a connected band of T-periodic solutions. The last possibility can be excluded if f(t,x) is strictly convex or concave for some t in the period interval. In this paper we investigate how the actual number of T-periodic solutions for a given equation of this type in principle can be determined, if f(t,x) is also assumed to have a continuous derivative . It turns out that there are three cases. In each of these cases we indicate the monotonicity properties and the domain of values for the function P(ξ)=S(ξ)−ξ, where S(ξ) is the Poincaré successor function. From these informations the actual number of periodic solutions can be determined, since a zero of P(ξ) represents a periodic solution.
Journal: Journal of Mathematical Analysis and Applications - Volume 331, Issue 1, 1 July 2007, Pages 206-219