کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4623002 1339509 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Persistence and global stability in discrete models of Lotka–Volterra type
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Persistence and global stability in discrete models of Lotka–Volterra type
چکیده انگلیسی

In this paper, we establish new sufficient conditions for global asymptotic stability of the positive equilibrium in the following discrete models of Lotka–Volterra type:{Ni(p+1)=Ni(p)exp{ci−aiNi(p)−∑j=1naijNj(p−kij)},p⩾0,1⩽i⩽n,Ni(p)=Nip⩾0,p⩽0,andNi0>0,1⩽i⩽n, where each NipNip for p⩽0p⩽0, each cici, aiai and aijaij are finite and{ai>0,ai+aii>0,1⩽i⩽n,andkij⩾0,1⩽i,j⩽n. Applying the former results [Y. Muroya, Persistence and global stability for discrete models of nonautonomous Lotka–Volterra type, J. Math. Anal. Appl. 273 (2002) 492–511] on sufficient conditions for the persistence of nonautonomous discrete Lotka–Volterra systems, we first obtain conditions for the persistence of the above autonomous system, and extending a similar technique to use a nonnegative Lyapunov-like function offered by Y. Saito, T. Hara and W. Ma [Y. Saito, T. Hara, W. Ma, Necessary and sufficient conditions for permanence and global stability of a Lotka–Volterra system with two delays, J. Math. Anal. Appl. 236 (1999) 534–556] for n=2n=2 to the above system for n⩾2n⩾2, we establish new conditions for global asymptotic stability of the positive equilibrium. In some special cases that kij=kjjkij=kjj, 1⩽i,j⩽n1⩽i,j⩽n, and ∑j=1najiajk=0, i≠ki≠k, these conditions become ai>∑j=1naji2, 1⩽i⩽n1⩽i⩽n, and improve the well-known stability conditions ai>∑j=1n|aji|, 1⩽i⩽n1⩽i⩽n, obtained by K. Gopalsamy [K. Gopalsamy, Global asymptotic stability in Volterra's population systems, J. Math. Biol. 19 (1984) 157–168].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 330, Issue 1, 1 June 2007, Pages 24–33
نویسندگان
,