کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4623028 1339509 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces
چکیده انگلیسی

Let E   be a real uniformly convex Banach space whose dual space E∗E∗ satisfies the Kadec–Klee property, K be a closed convex nonempty subset of E  . Let T1,T2,…,Tm:K→K be asymptotically nonexpansive mappings of K into E   with sequences (respectively) {kin}n=1∞ satisfying kin→1kin→1 as n→∞n→∞, i=1,2,…,mi=1,2,…,m, and ∑n=1∞(kin−1)<∞. For arbitrary ϵ∈(0,1)ϵ∈(0,1), let {αin}n=1∞ be a sequence in [ϵ,1−ϵ][ϵ,1−ϵ], for each i∈{1,2,…,m}i∈{1,2,…,m} (respectively). Let {xn}{xn} be a sequence generated for m⩾2m⩾2 by{x1∈K,xn+1=(1−α1n)xn+α1nT1nyn+m−2,yn+m−2=(1−α2n)xn+α2nT2nyn+m−3,⋮yn=(1−αmn)xn+αmnTmnxn,n⩾1. Let ⋂i=1mF(Ti)≠∅. Then, {xn}{xn} converges weakly to a common fixed point of the family {Ti}i=1m. Under some appropriate condition on the family {Ti}i=1m, a strong convergence theorem is also proved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 330, Issue 1, 1 June 2007, Pages 377–387
نویسندگان
, ,