کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4623072 1339510 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A limit theorem for Szegö polynomials with respect to convolution of point masses with the Fejér kernel
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
A limit theorem for Szegö polynomials with respect to convolution of point masses with the Fejér kernel
چکیده انگلیسی

Two recently-proposed methods for estimating the m frequencies of a trigonometric signal using Szegö polynomials of fixed degree k>m consist of multiplying the moments of the n-truncated periodogram by the moments of the Poisson kernel and the wrapped Gaussian, respectively, in an effort to address the non-convergence of the polynomials as n→∞. These methods are seen to be equivalent to convolution of point masses with approximate identities, suggesting a general method. We characterize the limit polynomial for the case when the approximate identity is the Fejér kernel, extending recent results of the author for the case of the Poisson kernel. Moreover, the limit is seen to be the same as in the former case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 327, Issue 2, 15 March 2007, Pages 908-918