کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4623161 1339511 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Eigenvalues and invariants of tensors
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Eigenvalues and invariants of tensors
چکیده انگلیسی

A tensor is represented by a supermatrix under a co-ordinate system. In this paper, we define E-eigenvalues and E-eigenvectors for tensors and supermatrices. By the resultant theory, we define the E-characteristic polynomial of a tensor. An E-eigenvalue of a tensor is a root of the E-characteristic polynomial. In the regular case, a complex number is an E-eigenvalue if and only if it is a root of the E-characteristic polynomial. We convert the E-characteristic polynomial of a tensor to a monic polynomial and show that the coefficients of that monic polynomial are invariants of that tensor, i.e., they are invariant under co-ordinate system changes. We call them principal invariants of that tensor. The maximum number of principal invariants of mth order n-dimensional tensors is a function of m and n. We denote it by d(m,n) and show that d(1,n)=1, d(2,n)=n, d(m,2)=m for m⩾3 and d(m,n)⩽mn−1+⋯+m for m,n⩾3. We also define the rank of a tensor. All real eigenvectors associated with nonzero E-eigenvalues are in a subspace with dimension equal to its rank.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 325, Issue 2, 15 January 2007, Pages 1363-1377