کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4623398 1339515 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cohen–Host type idempotent theorems for representations on Banach spaces and applications to Figà-Talamanca–Herz algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Cohen–Host type idempotent theorems for representations on Banach spaces and applications to Figà-Talamanca–Herz algebras
چکیده انگلیسی

Let G be a locally compact group, and let R(G) denote the ring of subsets of G generated by the left cosets of open subsets of G. The Cohen–Host idempotent theorem asserts that a set lies in R(G) if and only if its indicator function is a coefficient function of a unitary representation of G on some Hilbert space. We prove related results for representations of G on certain Banach spaces. We apply our Cohen–Host type theorems to the study of the Figà-Talamanca–Herz algebras Ap(G) with p∈(1,∞). For arbitrary G, we characterize those closed ideals of Ap(G) that have an approximate identity bounded by 1 in terms of their hulls. Furthermore, we characterize those G such that Ap(G) is 1-amenable for some—and, equivalently, for all—p∈(1,∞): these are precisely the abelian groups.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 329, Issue 1, 1 May 2007, Pages 736-751