کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4623517 1339517 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Invariant closed surface and stability of non-hyperbolic equilibrium point for polynomial differential systems in R3
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Invariant closed surface and stability of non-hyperbolic equilibrium point for polynomial differential systems in R3
چکیده انگلیسی

In this paper, by algebraic method and Lyapunov function, we discuss the stability of non-hyperbolic equilibrium point in R3, that the coefficient matrix of linearized system have a pair purely imaginary eigenvalues and a zero eigenvalue, with the perturbations of 3th-degree homogeneous and 3th-degree and 5th-degree homogeneous. We shall give the sufficiently conditions which can immediately distinguish that the equilibrium point is asymptotically stable or unstable and a ball-center by the coefficients of perturbed terms, meantime, we discuss the condition which produce invariant closed surface by changing the stability of equilibrium point with perturbation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 326, Issue 2, 15 February 2007, Pages 1346-1355