کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4623627 1339520 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Metriplectic structure, Leibniz dynamics and dissipative systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Metriplectic structure, Leibniz dynamics and dissipative systems
چکیده انگلیسی

A metriplectic (or Leibniz) structure on a smooth manifold is a pair of skew-symmetric Poisson tensor P and symmetric metric tensor G. The dynamical system defined by the metriplectic structure can be expressed in terms of Leibniz bracket. This structure is used to model the geometry of the dissipative systems. The dynamics of purely dissipative systems are defined by the geometry induced on a phase space via a metric tensor. The notion of Leibniz brackets is extendable to infinite-dimensional spaces. We study metriplectic structure compatible with the Euler–Poincaré framework of the Burgers and Whitham–Burgers equations. This means metriplectic structure can be constructed via Euler–Poincaré formalism. We also study the Euler–Poincaré frame work of the Holm–Staley equation, and this exhibits different type of metriplectic structure. Finally we study the 2D Navier–Stokes using metriplectic techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 326, Issue 1, 1 February 2007, Pages 121-136