کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4623772 1339523 2006 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hypercyclic subspaces for Fréchet space operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Hypercyclic subspaces for Fréchet space operators
چکیده انگلیسی

A continuous linear operator is hypercyclic if there is an x∈X such that the orbit {Tnx} is dense, and such a vector x is said to be hypercyclic for T. Recent progress show that it is possible to characterize Banach space operators that have a hypercyclic subspace, i.e., an infinite dimensional closed subspace H⊆X of, except for zero, hypercyclic vectors. The following is known to hold: A Banach space operator T has a hypercyclic subspace if there is a sequence (ni) and an infinite dimensional closed subspace E⊆X such that T is hereditarily hypercyclic for (ni) and Tni→0 pointwise on E. In this note we extend this result to the setting of Fréchet spaces that admit a continuous norm, and study some applications for important function spaces. As an application we also prove that any infinite dimensional separable Fréchet space with a continuous norm admits an operator with a hypercyclic subspace.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 319, Issue 2, 15 July 2006, Pages 764-782