کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4623835 1339524 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geometric existence theory for the control-affine H∞ problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Geometric existence theory for the control-affine H∞ problem
چکیده انگلیسی

We consider the differential game formulation of the nonlinear state feedback H∞ control problem, in which the control term enters linearly in the dynamics and quadratically in the cost. Under well-known conditions on the linearisation of this problem around the equilibrium point at the origin, there exists a stable Lagrangian manifold Λ. This manifold has a generating function S quadratic at infinity. A Lusternick–Schnirelman minimax construction produces from S a Lipschitz function W over state space. We show that, for problems in general position, −W is the lower value function for the H∞ problem, and prove existence of a weak globally optimal set valued feedback solution in terms of ∂W, the generalised gradient of W. This feedback generalises, to a maximal region over which Λ is simply connected, the classical smooth feedback defined on the neighbourhood of the origin over which Λ has a well-defined projection onto state space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 324, Issue 1, 1 December 2006, Pages 682-695