کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4623945 | 1339528 | 2006 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bifurcation analysis on a survival red blood cells model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we consider a model described the survival of red blood cells in animal. Its dynamics are studied in terms of local and global Hopf bifurcations. We show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay crosses some critical values. Using the reduced system on the center manifold, we also obtain that the periodic orbits bifurcating from the positive equilibrium are stable in the center manifold, and all Hopf bifurcations are supercritical. Further, particular attention is focused on the continuation of local Hopf bifurcation. We show that global Hopf bifurcations exist after the second critical value of time delay.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 316, Issue 2, 15 April 2006, Pages 459-471
Journal: Journal of Mathematical Analysis and Applications - Volume 316, Issue 2, 15 April 2006, Pages 459-471