کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4624104 | 1339532 | 2006 | 19 صفحه PDF | دانلود رایگان |

A new method is used for solving nonlinear multiobjective fractional programming problems having V-invex objective and constraint functions with respect to the same function η. In this approach, an equivalent vector programming problem is constructed by a modification of the objective fractional function in the original nonlinear multiobjective fractional problem. Furthermore, a modified Lagrange function is introduced for a constructed vector optimization problem. By the help of the modified Lagrange function, saddle point results are presented for the original nonlinear fractional programming problem with several ratios. Finally, a Mond–Weir type dual is associated, and weak, strong and converse duality results are established by using the introduced method with a modified function. To obtain these duality results between the original multiobjective fractional programming problem and its original Mond–Weir duals, a modified Mond–Weir vector dual problem with a modified objective function is constructed.
Journal: Journal of Mathematical Analysis and Applications - Volume 322, Issue 2, 15 October 2006, Pages 971-989