کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4624363 1339543 2006 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals
چکیده انگلیسی

The Whittaker–Shannon–Kotel'nikov sampling theorem enables one to reconstruct signals f   bandlimited to [−πW,πW][−πW,πW] from its sampled values f(k/W)f(k/W), k∈Zk∈Z, in terms of(SWf)(t)≡∑k=−∞∞f(kW)sinc(Wt−k)=f(t)(t∈R). If f   is continuous but not bandlimited, one normally considers limW→∞(SWf)(t)limW→∞(SWf)(t) in the supremum-norm, together with aliasing error estimates, expressed in terms of the modulus of continuity of f   or its derivatives. Since in practice signals are however often discontinuous, this paper is concerned with the convergence of SWfSWf to f   in the Lp(R)Lp(R)-norm for 1

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 316, Issue 1, 1 April 2006, Pages 269–306
نویسندگان
, , , ,