کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4624388 1339544 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Critical potentials of the eigenvalues and eigenvalue gaps of Schrödinger operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Critical potentials of the eigenvalues and eigenvalue gaps of Schrödinger operators
چکیده انگلیسی

Let M be a compact Riemannian manifold with or without boundary, and let −Δ be its Laplace–Beltrami operator. For any bounded scalar potential q, we denote by λi(q) the ith eigenvalue of the Schrödinger type operator −Δ+q acting on functions with Dirichlet or Neumann boundary conditions in case ∂M≠∅. We investigate critical potentials of the eigenvalues λi and the eigenvalue gaps Gij=λj−λi considered as functionals on the set of bounded potentials having a given mean value on M. We give necessary and sufficient conditions for a potential q to be critical or to be a local minimizer or a local maximizer of these functionals. For instance, we prove that a potential q∈L∞(M) is critical for the functional λ2 if and only if q is smooth, λ2(q)=λ3(q) and there exist second eigenfunctions f1,…,fk of −Δ+q such that . In particular, λ2 (as well as any λi) admits no critical potentials under Dirichlet boundary conditions. Moreover, the functional λ2 never admits locally minimizing potentials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 314, Issue 1, 1 February 2006, Pages 195-209