کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4624635 1631633 2015 83 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dirac reduction for nonholonomic mechanical systems and semidirect products
ترجمه فارسی عنوان
کاهش دیراک برای سیستم های مکانیکی غیرخانوادگی و محصولات نیمه مستقیم
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی

This paper develops the theory of Dirac reduction by symmetry for nonholonomic systems on Lie groups with broken symmetry. The reduction is carried out for the Dirac structures, as well as for the associated Lagrange–Dirac and Hamilton–Dirac dynamical systems. This reduction procedure is accompanied by reduction of the associated variational structures on both Lagrangian and Hamiltonian sides. The reduced dynamical systems obtained are called the implicit Euler–Poincaré–Suslov equations with advected parameters and the implicit Lie–Poisson–Suslov equations with advected parameters. The theory is illustrated with the help of finite and infinite dimensional examples. It is shown that equations of motion for second order Rivlin–Ericksen fluids can be formulated as an infinite dimensional nonholonomic system in the framework of the present paper.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 63, February 2015, Pages 131–213
نویسندگان
, ,