کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4636796 1340727 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical solution of the Fredholm singular integro-differential equation with Cauchy kernel by using Taylor-series expansion and Galerkin method
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Numerical solution of the Fredholm singular integro-differential equation with Cauchy kernel by using Taylor-series expansion and Galerkin method
چکیده انگلیسی

In this paper, we present a Taylor-series expansion method for a class of Fredholm singular integro-differential equation with Cauchy kernel. This method uses the truncated Taylor-series polynomial of the unknown function and transforms the integro-differential equation into an nth order linear ordinary differential equation with variable coefficients. By Galerkin method we use the orthogonal Legendre polynomials as a basis for finding the approximate solution of nth order differential equation. By the property of odd or even function we reduce the singularity of the integrals to the one point. Some numerical examples are also given to illustrate the efficiency and accuracy of the method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 182, Issue 1, 1 November 2006, Pages 888–897
نویسندگان
, ,