کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4636796 | 1340727 | 2006 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Numerical solution of the Fredholm singular integro-differential equation with Cauchy kernel by using Taylor-series expansion and Galerkin method
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we present a Taylor-series expansion method for a class of Fredholm singular integro-differential equation with Cauchy kernel. This method uses the truncated Taylor-series polynomial of the unknown function and transforms the integro-differential equation into an nth order linear ordinary differential equation with variable coefficients. By Galerkin method we use the orthogonal Legendre polynomials as a basis for finding the approximate solution of nth order differential equation. By the property of odd or even function we reduce the singularity of the integrals to the one point. Some numerical examples are also given to illustrate the efficiency and accuracy of the method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 182, Issue 1, 1 November 2006, Pages 888–897
Journal: Applied Mathematics and Computation - Volume 182, Issue 1, 1 November 2006, Pages 888–897
نویسندگان
K. Maleknejad, A. Arzhang,