کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4645071 | 1632186 | 2015 | 19 صفحه PDF | دانلود رایگان |
Consider an inverse problem for the time-fractional diffusion equation in one dimensional spatial space. The aim is to determine the initial status and heat flux on the boundary simultaneously from heat measurement data given on the other boundary. Using the Laplace transform and the unique extension technique, the uniqueness for this inverse problem is proven. Then we construct a regularizing scheme for the reconstruction of boundary flux for known initial status. The convergence rate of the regularizing solution is established under some a priori information about the exact solution. Moreover, the initial distribution can also be recovered approximately from our regularizing scheme. Finally we present some numerical examples, which show the validity of the proposed reconstruction scheme.
Journal: Applied Numerical Mathematics - Volume 87, January 2015, Pages 1–19